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A model study for the steady state error of numerical
approximations of inviscid �ow equations
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SUMMARY

The widely used locally adaptive Cartesian grid methods involve a series of abruptly re�ned interfaces.
In this paper we consider the in�uence of the re�ned interfaces on the steady state errors for second-order
three-point di�erence approximations of �ow equations. Since the various characteristic components of
the Euler equations should behave similarly on such grids with regard to re�nement-induced errors, it
is su�cient enough to conduct the analysis on a scalar model problem. The error we consider is a
global error, di�erent to local truncation error, and re�ects the interaction between multiple interfaces.
The steady state error will be compared to the errors on smooth re�nement grids and on uniform grids.
The conclusion seems to support the numerical �ndings of Yamaleev and Carpenter (J. Comput. Phys.
2002; 181:280–316) that re�nement does not necessarily reduce the numerical error. Copyright ? 2005
John Wiley & Sons, Ltd.

KEY WORDS: Cartesian grid; multiple interfaces; steady state error; three-point di�erence approxi-
mation

1. INTRODUCTION

The locally adaptive Cartesian grid method is now common in Computational Fluid Dynamics
[1–12]. In this method, the entire grid is composed of divided zones (which will be called
subgrids for convenience) each having a uniform mesh size and with abrupt mesh re�nement
at the interfaces. In a conventional Cartesian grid method, a cell is equally divided in both
directions so that a cell is split into four subcells once a re�nement is needed. This is called
anisotropic Cartesian grid. It can also be divided into two based on re�nement only in one
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direction (anisotropic re�nement, see References [12, 13]). More recently, a nonet Cartesian
grid method [14] is proposed for which a cell can be divided into nine subcells or six subcells
so that a very strong re�nement ratio exists.
The particular feature of the Cartesian grid method is the existence of multiple re�nement

interfaces which are separated by subgrids of uniform mesh size, see Figure 1 for a typical
adaptive Cartesian grid. With the well-established stability and convergence theory, the solu-
tion behaviour can be easily predicted for the case of a single grid interface. For instance,
with a second-order accurate di�erence scheme in each subgrid, and a �rst-order accurate
(locally second-order accurate) interface treatment, the global accuracy is still second order
according to the convergence theorem of Gustafsson [15]. The stability of a single mesh re-
�nement interface, independent of the re�nement degree, has been studied long before, see
for instance References [2, 16–18]. Little attention has been paid to the theoretical questions
(accuracy, stability, convergence, uniqueness) of a problem with a series of interface. Besides,
a standard approach for global error analysis of such a problem is not readily available. One
generally believes that an adaptive Cartesian grid method has some advantages: it is fast for
grid generation, and accurate due to the local grid regularity. It is not yet known how the
existence of multiple interfaces changes the accuracy. In Reference [19], we have studied the
problem of mesh re�nement induced dissipation which is closely but not exactly related to
stability. For a general semi-discrete three-point di�erence approximation with uneven mesh
spacing, if the wave moves in the �ne-to-coarse direction then the dissipation is positive
(stabilizing), and if the wave moves in the coarse-to-�ne direction then the dissipation is
negative (de-stabilizing). Moreover, the amount of dissipation is insensitive to the subgrid
width if the total re�nement degree is �xed. For the fully discrete Lax–Wendro� scheme, the
lower bound of the stability region is increased by mesh re�nement, while the upper bound is
reduced.

Figure 1. Adaptive Cartesian grid near an airfoil.
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A theoretical analysis for the error caused by the existence of a series of abrupt interfaces
still lacks. But numerical study of errors on such types of grid has been studied previously,
see Reference [20] and the references cited there. Yamaleev and Carpenter have discussed
the accuracy of adaptive grid methods, the smooth re�nement method and the abrupt re�ne-
ment method, for shock wave computation using various schemes. The grid re�nement study
shows that for a second-order scheme, neither grid adaptation strategy improves the numerical
solution accuracy compared to that calculated on a uniform grid with the same number of
grid points. For a fourth-order scheme, the dominant �rst-order error component is reduced
by the grid adaptation, while the design-order error component drastically increases because
of the grid non-uniformity. As a result, both grid adaptation techniques improve the numerical
solution accuracy only on the coarsest mesh or on very �ne grids that are seldom found in
practical applications because of the computational cost involved.
In this paper we will consider the di�erence approximation of a �ow equations on a Carte-

sian grid and address the question of steady state errors caused by multiple interfaces. In order
to drop out the unnecessary complexity, we will perform the analysis just by considering a
representative model equation on a grid with a series of interfaces. The model is just a scalar
hyperbolic equation. The conclusions hold for the case of system of equations as resulted
from gas dynamics, since the problem can be diagonalized and the various scalar components
should behave similarly on the same grid. In this paper we do not consider the dicretization
errors of the viscous dissipation terms on Cartesian grids. The derivation of the steady state
errors is rather straightforward and does not involve complex algebra as commonly seen in
modern numerical analysis. Hence the paper is more suitable for the community of CFD than
those in the �eld of numerical analysis.
The model problem suitable for analysis is presented in Section 2. In Section 3, we study

the numerical error for a second-order non-dissipative scheme, in which the in�uence of the
subgrid width is analysed. In Section 4, we consider the case of the Lax–Wendro� scheme.
Section 5 is devoted to a general three-point scheme with standard treatment of the source

term of the exact equation. The case of constant numerical viscosity or variable numerical
viscosity, which corresponds to local time-stepping or uniform time-stepping for the Lax–
Wendro� scheme, is investigated. In Section 5, we also consider the di�erence between con-
servative treatment and non-conservative treatment and the numerical error for mesh re�nement
problem is compared with the error on a uniform grid.
In Section 6, we will demonstrate some numerical results in order to check some compli-

cated analytical results and then make some conclusions.

2. STATEMENT AND DEFINITION OF THE PROBLEM

A common feature of the adaptive Cartesian grid method is that it uses an isotropic re�nement
strategy. The grid generation starts with a background Cartesian grid with square or rectangular
cells. The �nal grid is generated by the recursive subdivision of a single cell (parent) into four
equal cells (children) when and where it is necessary. The hierarchical relation between the
children and parents is stored and used for cell neighbour searching. The resulting grid thus
involves cells of various sizes. A subgrid of level l with l=0; 1; : : : ; L refers to all the cells
having the same mesh size hl. The mesh size satis�es the relation hl= rlh0 where r, typically
with r= 1

2 , is the re�nement ratio and h0 is the mesh size on the coarse grid. Since a cell
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is re�ned equally in both directions independently of the geometry and the �ow gradient, the
resulting Cartesian grid is isotropic. There are two types of Cartesian grid method: one is the
conventional isotropic Cartesian grid method [8, 11] and the other is the anisotropic Cartesian
grid method proposed by the present author [12, 13]. Figure 2 is the anisotropic counter part
of the grid for Figure 1.
There are also situations for which one would require the grid re�nement to be more rapid

than the quadratic method as presented above. Figure 3 is an example. This is a transonic

Figure 2. Anisotropic Cartesian grid for the same geometry as for Figure 1.

Figure 3. Nonet grid for a NACA2822 airfoil.
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�ow around a RAE2822 airfoil, the Mach number is 0.729 and the angle of attack is 2:31◦.
In this case there is a straight shock above the airfoil. In order to resolve the shock without
adding too many unnecessary grid points elsewhere, an alternative approach is to use nonet
grid, for which a cell would be divided into nine subcells in the istropic approach or six cells
in the anisotropic approach (see Figure 4 for an example).
The use of nonet grid would lead to very �ne shock structure (see Figure 5) while keeping

the number of grid points to a reasonable value.
An immediate question is that, while a strong re�nement can e�ciently resolve

discontinuities, how the cell interfaces, with a re�nement ratio equal to 1
2 for the quadratic

approach and 1
3 for the nonet approach, a�ects the accuracy in the smooth �ow regions? For

a smooth transition of the grid, the re�nement has to cross the smooth �ow regions.
It is impossible to perform a rigorous analysis in the complex 2D or even 3D case. Instead,

a one dimension study for a model equation would be more instructive. This is why we want
to build a one-dimensional equivalent.
Now we describe the one-dimensional equivalent of the Cartesian grid method suitable for

error analysis. The grid system is displayed in Figure 6, the entire grid is composed of a
certain number of subgrids Gl of di�erent levels separated by interfaces. Let hl be the mesh
size of level l with 06l6L. The interface separating the two adjacent levels l and l + 1
will be called interface Il+1=2. Usually in a Cartesian grid method the number of grid points
normal to the interface in each level is almost a constant and that the re�nement ratio at
subgrid interfaces is a constant. We will assume hl= h0rl where r with r¡1 is a constant
independent of l. Additionally, the number of grid points in each subgrid is constant and
equal to p. The integer p will also be called the subgrid width.
For convenience, let us de�ne the total re�nement degree by rT = hL=h0. The local re�nement

degree r= hl+1=hl is related to rT by r= r
1=L
T . To be more general, 1=r is not necessarily

Figure 4. Anisotropic nonet grid for a NACA2822 airfoil.
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Figure 5. Mach contours around the RAE2822 airfoil. The use of nonet grid leads to very �ne shock
structure while keeping the number of grid points to a reasonable value.

Figure 6. One-dimensional Cartesian grid with a series of interfaces and with
each subgrid having the same width.

an integer in the subsequent analysis, though in the adaptive Cartesian grid method, one takes
r= 1

2 without exception. Precisely, we will let r take all values in the interval (0,1). For
instance, if p=1 and r→ 1, then we obtain a smooth re�nement method. This allows us to
compare the accuracy of the adaptive Cartesian grid method with that of a smooth re�nement
method. If we take r¡ 1

2 , one can see what would happen if the grid is over-re�ned. For
instance, the case with r=1

3 corresponds to a Cartesian grid in which a cell is divided into
three in each direction. According to the knowledge of the author, no one has yet used such
a Cartesian grid.
In varying the parameter p and r, we must keep the total re�nement degree rT to be �xed.

This is a practically useful constraint. In computing �ow problems, the largest mesh size is
given, which may depend on the far �ow �eld. The smallest mesh size depends on the �nest
local �ow structure, as in the boundary layers. Our question is: keeping the total re�nement
degree �xed, which choice of r gives the best accuracy, smooth variation (r→ 1) or abrupt
re�nement (r = 1

2 ;
1
3 ; : : :)?
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For convenience, we de�ne an averaged re�nement degree by r0 = r1=p= r
1=pL
T . It means

that, if the local re�nement degree for each mesh point is r0, then the total re�nement degree
is rT (= r

pL
0 ).

In order to perform a detailed analysis of the in�uence of the multiple interfaces on the
numerical error, we will consider the following scalar equation:

ut + ux= s(x); 0¡x¡1 (1)

where s(x) is a given function.
The reason of choosing the simpli�ed model is that: we are just interested in whether a

second-order accurate di�erence approximation has a global second-order accuracy under the
in�uence of a series interfaces. Moreover, we want to know whether the Cartesian grid method
remains as accurate as a conventional grid re�nement method such as the smooth re�nement
method. More generally, for numerical analysis (of accuracy, stability, TVD behaviour, entropy
condition, etc.) in CFD problems, it is very common to perform the analysis on a scalar
equation. Then the problem becomes tractable, and the results remain meaningful since the
original system of equations is almost diagonalizable (it is indeed diagonalizable for the Euler
equations in gas dynamics). Another important reason is that, in the present problem a series
of interfaces exist so that it is very di�cult to consider the full system of Navier–Stokes
equations for detailed theoretical analysis.
The steady state numerical solution is often achieved through the iteration of a time-

dependent di�erence approximation. When the numerical solution converges in the sense that
it no longer varies in time (in some numerical sense), then we consider the numerical solution
to be the steady state one.
On the Cartesian grid including the particular case of smooth re�nement with p=1 and

r→ 1, let the numerical solution at grid j of subgrid l be unl; j. A three-point di�erence
approximation can be generally written in the following viscous form:

un+1l; j = u
n
l; j − 1

2
�l(unl; j+1 − unl; j−1) +

1
2
�lQ

(num)
l (unl; j+1 − 2unl; j + unl; j−1)

+ klsl; j − q
2
k2l (sx)l; j (2)

where l∈L and j∈J, with L= {0; 1; : : : ; L} and J= {1; 2; : : : ; p}. Here �l denotes the ratio
between the time step kl and the mesh size hl, Q

(num)
l is the numerical viscosity coe�cient,

and q is some constant (see Sections 4 and 5). A multipoint di�erence scheme can also be put
into form (2) with the in�uence of the grid points outside of those of a three-point scheme
factored into the viscosity coe�cient, see for instance Reference [21] for the case of a scalar
equation and Reference [22] for the case of a system of equations.
At steady state with unl; j|n*∞= ul; j, the above di�erence equation reduces to

−�l
2
(ul; j+1 − ul; j−1) + �l2 Q

(num)
l (ul; j+1 − 2ul; j + ul; j−1) + klfl; j − q

2
k2l (sx)l; j=0 (3)

The di�erence equation (2) includes three typical cases: second-order non-dissipative scheme
(Section 3), Lax–Wendro� scheme (Section 4), and dissipative schemes with �rst-order
treatment of the source term (Section 5).
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For the interface Il−1=2 separating the subgrids l−1 and l, we have two interface unknowns
ul−1; p+1 and ul;0 which are used in but not provided by the di�erence equation in each
block. In higher dimensions it is often enough to consider a linear interpolation. This, in
the one-dimensional case, reduces to the well-known Browning–Kreiss–Oliger [16] interface
condition:

ul−1; p + ul−1; p+1
2

=
ul;0 + ul;1

2
;
ul−1; p+1 − ul−1; p

hl−1
=
ul;1 − ul;0

hl
(4)

The above interface condition is globally �rst-order accurate or locally second-order accurate.
For the starting level l=0, we need a boundary condition at the left boundary point j=0.

This, for the present problem, should be de�ned by a Dirichlet condition:

u0;0 = 0 (5)

For the ending level l=L, we need a boundary condition at the right boundary point
j=p + 1. This, for the present problem, should be de�ned by some extrapolation. For the
present study, it is su�cient enough to consider the following locally second-order accurate
(globally �rst-order accurate) linear extrapolation condition:

uL;p+1 =2uL;p − uL;p−1 (6)

For a Cauchy problem with only one interface and for a second-order accurate interior dif-
ference equation, a locally second-order accurate boundary treatment is su�cient to maintain
the global accuracy to be second order [15]. But the present problem involves a series of
interfaces.
Since we are considering at most second-order accurate di�erence approximations, the dom-

inant error will be essentially due to the second-order derivative of the solution. It is thus
su�cient to consider the case uxx=Const. By (1), we have uxx= sx in the case of a steady
state. Thus we will assume s= x so that the steady state solution is given by u = 1

2 x
2 with

uxx=1. There is no di�culty to extend the present results to the case with u=(1=k!)xk and
the results remain essentially the same. Since any smooth solution can be represented by a
linear combination of (1=k!)xk through Taylor expansion, the present conclusion remains true
for any solutions.
The numerical error at the point l and j, which we denote el; j, is de�ned as the di�erence

between the numerical solution ul; j and the exact solution u(xl; j):

el; j = ul; j − u(xl; j); l∈L; j∈J

Making use of (4) and uxxx=0, it is straightforward to show that the interface condition for
the numerical error is given by

el−1; p + el−1; p+1
2

=
el;0 + el;1

2
+
1
8
h20(r

2l − r2(l−1))

el−1; p+1 − el−1; p
hl−1

=
el;1 − el;0

hl
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which can be solved to give

el;0=
2r
1 + r

el−1; p +
1− r
1 + r

el;1 +
r2l−1

4
(1− r)h20 (7)

el−1; p+1=
r − 1
1 + r

el−1; p +
2

1 + r
el;1 − r2(l−1)

4
(1− r)h20 (8)

From the boundary conditions (5) and (6), we obtain two additional relations for the errors

e0;0=0 (9)

eL;p+1=2eL;p − eL;p−1 − r2Lh20 (10)

3. SECOND-ORDER NON-DISSIPATIVE SCHEME

In this case both the numerical viscosity Q(num)l and the constant q vanish. The corresponding
steady state di�erence equation reduces to

− 1
2
1
hl
(ul; j+1 − ul; j−1) + sl; j=0 (11)

This is a non-dissipative scheme with a second-order accuracy on a uniform grid.

Lemma 3.1
Let the interface condition and the boundary conditions be de�ned by (4) and (5)–(6). Then
for the di�erence equation (11), the numerical error is given by

el; j =
[
1
4 (−1)p(L−1)rLp0 (−1 + (−1)pl+jrpl0 ) + 1

8(1− r2pl0 )
]
h20 (12)

Proof
From (11), it is straightforward to show that the error el; j satis�es the following equation
which has no source term:

el; j+1 − el; j−1 = 0

whose general solution is given by

el; j= al + bl(−1) j (13)

Here al and bl are constants independent of j. Introducing (13) into the interface relations
(7)–(8) leads to the following recursive relations:

al= al−1 + 1
8(1− r2p0 )h2l−1

bl=(−1)prp0 bl−1
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which can be solved to give the following explicit expressions for al and bl:

al= a0 + 1
8(1− r2pl0 )h20; bl=(−1)lprlp0 b0; 16l6L (14)

Introducing (13) into the boundary relations (9)–(10) gives

a0 + b0 = 0; bL= 1
4(−1)ph2L (15)

Combining the second equation of (14) for l=L and the second relation of (15) leads to

b0 = 1
4(−1)p(1−L)rLp0 h20

By the above expression for b0 and the �rst equation of (15), we �nally have

a0 = − 1
4 (−1)p(1−L)rLp0 h20

Introducing the above expressions for a0 and b0 into (14) leads to explicit expressions for al
and bl which can then be used in (13) to yield (12).

Though the grid system involves multiple interfaces and that each interface treatment is
only globally �rst order accurate, Lemma 3.1 implies second-order convergence rate, as can
be more clearly stated in the following proposition.

Proposition 3.2
The problem de�ned by (4), (5)–(6), and (11) has a second-order convergence rate with
respect to the coarsest mesh size h0.

Now we consider how the subgrid width p in�uences the global accuracy. For that purpose,
we keep the total re�nement degree rT and the total number of mesh points p(L+ 1) �xed.

Proposition 3.3
Let pL and r0, or equivalently rT with rT � 1, be �xed. Then near the �ne side of the grid,
i.e. when l→L, the Cartesian grid method is as accurate as the smooth re�nement method,
that is, the numerical error is independent of the subgrid width p.

Proof
By rT = r

Lp
0 � 1, for l→L Equation (12) in Lemma 3.1 can be simpli�ed as

el; j → 1
8 h

2
0

so that el; j is independent of p. This proves the second part.

Remark 3.4
One would readily imagine that the Cartesian grid method, which involves closely related
abrupt re�nement interfaces, should be less accurate than the smooth re�nement method.
However, Proposition 3.3 clearly shows that in the �ne side of the grid, which is the most
important part for mesh re�nement purpose, the numerical error is almost independent of the
subgrid width if the total re�nement degree is kept �xed.
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4. SECOND-ORDER DISSIPATIVE SCHEME: LAX–WENDROFF SCHEME

The numerical viscosity Q(num)l and the constant q are de�ned by

Q(num)l = �l; q=1

The corresponding steady state di�erence equation reduces to

− 1
2hl
(ul; j+1 − ul; j−1) + 1

2hl
�l(ul; j+1 − 2ul; j + ul; j−1) + sl; j − 1

2
kl(sx)l; j=0 (16)

This scheme has a second-order accuracy on a uniform grid and comes from the derivation of
the classical Lax–Wendro� scheme [23]. To see that, let us just repeat the derivation of the
Lax–Wendro� scheme for an equation with a source term, that is Equation (1). First write

un+1l; j − unl; j= kl(ut)nl; j + 1
2 k

2
l (utt)

n
l; j + o[k

2
l ] (17)

Dropping the high-order terms in (17), replacing ut and utt by

ut =−ux + s

utt = (−ux + s)t = − (ut)x= − (−ux + s)x

= uxx − sx

where we have used the exact equation (1), we arrive at the following approximation:

un+1l; j − unl; j= − kl(−ux)nl; j + 1
2 k

2
l (uxx)

n
l; j + klsl; j − 1

2 k
2
l (sx)l; j

which, in the steady state case, can be written as

−kl(ux)l; j + 1
2 k

2
l (uxx)l; j + klsl; j − 1

2 k
2
l (sx)l; j=0

Replacing the space derivatives by second-order central di�erences in the above equation leads
to (16).
For steady state computation, it is natural to use local time-stepping so that we take a

constant �l, that is �l= �. With uxx=1 and s= x, the di�erence approximation (16) can be
used to yield the following error equation:

(�− 1)el; j+1 − 2�el; j + (�+ 1)el; j−1 = 0 (18)

We remark that the above equation has no source term. Note that, by considering a uniform
time stepping method so that �l depends on l, we can still solve the problem. The general
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solution of the above equation is found to be

el; j= al + bl�j; �=
�+ 1
�− 1 (19)

Introducing this general solution into the interface conditions (7)–(8) leads to

al=a0 +
�p(�+ 1)

2
(1− rp0 )

1− (r0�)pl
1− (r0�)p b0 +

1
8
(1− r2pl0 )h20 (20)

bl=(r0�)plb0 (21)

Introducing this general solution into the boundary conditions (9)–(10) leads to

a0 =
(r0�)−pLr

2pL
0

�p−1(� − 1)2 h
2
0

b0 = − (r0�)−pLr
2pL
0

�p−1(� − 1)2 h
2
0

Under the assumption that rT � 1, Equations (19)–(21) can be combined to yield the follow-
ing lemma.

Lemma 4.1
Let rT � 1. Then the numerical error of the problem de�ned by (4)–(6), and (16) is
given by

el; j = 1
8(1− r2pl0 )h20 (22)

The following proposition directly follows from Lemma 4.1.

Proposition 4.2
The problem de�ned by (4)–(6), and (16) has a second-order convergence rate with respect
to the coarsest mesh size h0.

Similar as for Proposition 3.3, the following proposition holds.

Proposition 4.3
Let rT with rT � 1 and pL be �xed. Then

(a) near the coarse side of the grid, i.e. when l�L, the Cartesian grid (with large p)
method is less accurate than the smooth re�nement (with p=1);

(b) near the �ne side of the grid, i.e. when l→L, the Cartesian grid method is as accurate
as the smooth re�nement method, that is, the numerical error is independent of the
subgrid width p.
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5. DISSIPATIVE SCHEME WITH STANDARD TREATMENT
OF THE SOURCE TERM

The numerical viscosity Q(num)l is generally non-zero but the constant q vanishes. The corre-
sponding steady state di�erence equation is de�ned by

− 1
2hl
(ul; j+1 − ul; j−1) + 1

2hl
Q(num)l (ul; j+1 − 2ul; j + ul; j−1) + sl; j=0 (23)

Setting Q(num)l =0 recovers scheme (11). Setting Q(num)l =1 leads to the well-known �rst-order
upwind scheme. Setting Q(num)l = �l yields the Lax–Wendro� scheme with standard treatment
of the source term. Such a treatment for the source term is quite standard. See for instance
Reference [24].
Since setting Q(num)l = �l, with �l denoting the ratio between the time step and the local

mesh size, still covers all the possible cases through the use of constant and local time-
steppings, we will simply let Q(num)l = �l. For example, if we let �l=1, then we recover the
�rst-order accurate upwind scheme, if we let �l=Const which means local time-stepping, then
we recover a central di�erence scheme with constant arti�cial dissipation, etc.
From (23) the following error equation can be derived in a straightforward way:

(�1 − 1)el; j+1 − 2�lel; j + (�l + 1)el; j−1 =dl; j (24)

where dl; j= − �lh2l is a source term. The error due to dl; j will be coupled with the errors
due to interface treatment.
The general solution of (24) is found to be

el; j= al + bl�
j
l +

j
2
�lh2l ; �l=

�l + 1
�l − 1 (25)

where al and bl are constants to be determined by the interface and boundary conditions.

5.1. Reference error: error on a uniform grid (r0 = 1)

In order to see how (abrupt) mesh re�nement improves the accuracy, it is useful to compare
the error with the error eref on a uniform grid (hl= h0). To avoid confusion, here we assume
that p=1. This is not a restriction since the grid is uniform in the entire domain. For
convenience, eref will be called reference error. Comparing with the reference error, we will
be able to answer the question: does mesh re�nement necessarily reduce the numerical error
with respect to a method on a coarse but uniform grid?
When r0 = 1, we can write al= a, bl= b, �l=�, �l=�. There is no need to use interface

conditions since they degenerate to trivial identities. Introducing (25) with al= a and bl= b
into the boundary conditions (9)–(10) leads to

a= 1
4 �

−L(�2 − 1)h20; b= − 1
4 �

−L(�2 − 1)h20
With the help of (25), the error at point l, now simply denoted as eref (l), is found to be

eref (l)=
1
4
�−L(�2 − 1)(1− �−l)h20 +

l
2
�h20 ≈ l

2
�h20 (26)
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For purpose of direct comparison with the result for r0¡1, it is convenient to relate the
reference error to the abscise x. Since for r0 = 1, l= x=h0 (ignoring the discussion of whether
the point l=0 locates at x= h0 or at x= 1

2 h0), the reference error (26) can be more conve-
niently written as

eref (x)≈ 1
2 �h0x (27)

We will compare (27) with the numerical error el; j for the general case with r0¡1 and p¿1.
First remark that

xl; j=
l0=l−1∑
l0=0

phl0 + jhl=

(
l0=l−1∑
l0=0

prl
0
+ jrl

)
h0 =

(
p(1− rl)
1− r + jrl

)
h0

Thus, at the point xl; j or l; j of any abrupt grid system with r0¡1 and p¿1, the reference
error (27), which is the error for a uniform grid, can be written as

eref (l; j) = eref (xl; j)≈ 12 �
(
p(1− rl)
1− r + jrl

)
h20

=
1
2
�

(
p(1− rpl0 )
1− rp0

+ jrpl0

)
h20 (28)

5.2. Error for constant time-stepping

For constant time-stepping, kl= k so that �l= k=hl= �Lr
p(L−l)
0 . Let �= �Lr

pL
0 . Then (25) can

be rewritten as

el; j= al + blR(l) j +
j
2
�rpl0 h

2
0; R(l)=

�+ rpl0
�− rpl0

(29)

Introducing (29) into the interface conditions (7)–(8) leads to the following expressions for
al and bl:

al=a0 +Q(l)b0 +
1
4
�(2p+ 1− rp0 )

1− rpl0
1− rp0

h20 +
1
8
(1− r2pl0 )h20 (30)

bl=b0S(l) (31)

where

Q(l)=
1
2

l∑
i=1
S(i)

(
[R(i − 1) + 1][R(i)− 1]

R(i − 1)− 1 − R(i)− 1
)

S(l)= rp0
i=l−1∏
i=0

R(i)p
∏i=l−1
i=0 (R(i)− 1)∏i=l−1
i=0 (R(i)− 1)
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Introducing (29) into the boundary conditions (9)–(10) leads to the following expressions for
a0 and b0:

a0 =
1
4
r2pl0

S(L)
(�2L − 1)h20; b0 = − 1

4
r2pl0

S(L)
(�2L − 1)h20 (32)

The error expression (29) involves complicated formulas for the constants al and bl. It is
thus very di�cult to draw conclusions in an explicit way. Here we just consider the particular
case of �L → 1. This is the upper bound of the stability condition of usual explicit schemes.
In this case a0 = 0 and b0 = 0 according to (32). Then with the help of (30) and (31), the
error expression (29) can be simpli�ed as

el; j=
1
4

[
rT

(
2p
1− rp0

+ 1
)
(1− rpl0 ) +

1
2
(1− r2pl0 ) + 2rT r

pl
0 j
]
h20 (33)

Thus we have proved.

Proposition 5.1
Let rT be �xed and let �L → 1. The problem de�ned by (4)–(6), and (23), with constant
time-stepping, has a second-order convergence rate with respect to the coarsest mesh size h0.

Similar as for Propositions 3.3 and 4.3, the following proposition holds.

Proposition 5.2
Let rT with rT � 1 and pL be �xed and let �L → 1. Then for the problem de�ned by
(4)–(6), and (23), with constant time-stepping,

(a) near the coarse side of the grid, i.e. when l�L, the Cartesian grid (with large p)
method is less accurate than the smooth re�nement (with p=1);

(b) near the �ne side of the grid, i.e. when l→L, the Cartesian grid method is as accurate
as the smooth re�nement method, that is, the numerical error is independent of subgrid
width p.

Proof
We just consider the second part. In fact, for l→L and rT � 1, (33) reduces to

el; j= 1
2 h

2
0

which is independent of p.

Proposition 5.3
When constant time-stepping is used, re�ning the mesh from the left to the right, in a way
such that the coarsest mesh size is equal to the mesh size on the corresponding uniform grid,
always improves the accuracy.

Proof
Compare the numerical error (33) with the reference error (28) and write

el; j
eref (l; j)

=
1
4 [rT ((2p=(1− rp0 )) + 1)(1− rpl0 ) + 1

2(1− r2pl0 ) + 2rT r
pl
0 j]h

2
0

1
2 �((p(1− rpl0 )=(1− rp0 )) + jrpl0 )h20
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=
rT ((2p=(1− rp0 )) + 1)(1− rpl0 ) + 1

2(1− r2pl0 ) + 2rT r
pl
0 j

2�(p(1− rpl0 )=(1− rp0 ) + jrpl0 )

=
((2prT =(1− rp0 )) + rT + 1

2(1 + r
pl
0 ))(1− rpl0 ) + 2rT rpl0 j

2�(p(1− rpl0 )=(1− rp0 ) + jrpl0 )

A straightforward calculation using the above equation shows that∣∣∣∣ el; j
eref (l; j)

∣∣∣∣¡1 ∀l; j

for all r0¡1.

5.3. Error for local time-stepping

For the well-known local time-stepping method useful for steady state computation, the time
step kl is proportional to the mesh size hl so that �l is a constant independent of l. Let us
denote �l= �. Introducing (25) into the interface conditions (7)–(8) leads to the following
recursive relations:

al = al−1 + �bl−1 + �h2l−1 (34)

bl = �bl−1 + �h2l−1 (35)

where

�= �p
�

�− 1(1− rp0 ); �=
�+ 1
�− 1

�= 1
4[�(2p+ 1) +

1
2 − (�+ 1

2

)
r2p0 − �2rp0 (1− rp0 )]

�= rp0 �
p

�= 1
4 �(�− 1)rp0 (1− rp0 )

After a large number of algebraic calculations, we obtain from the recursive relations
(34)–(35) the following expressions for al and bl:

al = a0 + �
1− �l
1− � b0 +

i=l−1∑
i=0

(��q(i) + �r2p0 )r
2p(i−1)
0 h20

= a0 +

(
�+

��

r2p0 − �

)
1− r2pl0

1− r2p0
h20 −

(
��

r2p0 − � h
2
0 − �b0

)
1− �l
1− � (36)

bl=�lb0 + �q(l)r
2p(l−1)
0 h20 (37)
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where

q(l) =
1− (�=r2p0 )l
1− (�=r2p0 )

Introducing (25) into the boundary conditions (9)–(10), and using (36)–(37), we obtain the
following expressions for a0 and b0:

a0 = [�−L�q(L)r
2p(L−1)
0 + 1

4 �
−L�−p(�2 − 1)r2pL0 ]h20

b0 = −[�−L�q(L)r2p(L−1)0 + 1
4 �

−L�−p(�2 − 1)r2pL0 ]h20

The above expressions are too complicated to be used in deriving useful results. Thus we only
consider the case of l→L and rT � 1. Introducing these expressions into (36)–(37) leads to
the �nal expressions for al and bl which, after dropping high-order terms, can be written as

a1 ≈
[(
�+

��

r2p0 − �

)
1− r2pl0

1− r2p0
− �

r2p0 − �

]
h20; bl ≈ � r2pl0

r2p0 − � h
2
0

Introducing the above expressions for al and bl into (25) leads to the �nal expression for the
error

el; j ≈
[(
�+

��

r2p0 − �

)
1− r2pl0

1− r2p0
− �

r2p0 − � + �
r2pl0

r2p0 − � �
j +

1
2
�r2pl0 j

]
h20 (38)

Thus we have proved.

Proposition 5.4
Let rT with rT � 1 be �xed and let �L → 1 and l→L. The problem de�ned by (4)–(6),
and (23), with local time-stepping, has a second-order convergence rate with respect to the
coarsest mesh size h0.

In fact the above proposition also holds for any 06l¡L.
From (38) there is no di�culty to prove the following.

Proposition 5.5
Let rT with rT � 1 and pL be �xed. Furthermore let l→L. Then for the problem de�ned
by (4)–(6), and (23), with local time-stepping, the numerical error at a �xed abscise is an
increasing function of the subgrid width p.

The above proposition also holds for any l with 06l6L.
Comparing the di�erent terms in (38), it can be shown that the combination of several

terms is relatively very small. Notably, for the parameters considered, it holds that

�
1

1− r2p0
�
∣∣∣∣∣ ��

r2p0 − �
1

1− r2p0
− �

r2p0 − �

∣∣∣∣∣ ; r2pl0 j≈ 0
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Thus (38) can be further simpli�ed as

el; j ≈ �

1− r2p0
h20 (39)

Proposition 5.6
Let l→L; rT � 1 and p=1. Then

(a) for 1¿r0¿2
√
3 − 3, the error el;1 is smaller than eref (l; 1) for 06�61, that is, the

considered mesh re�nement method is more accurate than the uniform mesh method
with a mesh size equal to h0 (coarsest mesh size);

(b) for r062
√
3− 3, then there exists a �= �(r0)¿0 such that the error el;1 is larger than

eref (l; 1) for 1− �6�61, that is, the mesh re�nement method is less accurate than the
uniform mesh method with a mesh size equal to h0 (coarsest mesh size).

Proof
Compare the numerical error (39) with the reference error (28) and write for p = 1

el;1
eref (l; 1)

≈ (�(p=1)=(1− r20 ))h20
1
2 �((1− rl0)=(1− r0) + rl0)h20

≈ 2��
1 + r0

The results then follow without any di�culty.

The above proposition shows that one should not re�ne the grid too abruptly, otherwise
the accuracy is even worse than that of a coarse grid method. Similar result holds for p¿1.

5.4. Error for conservative local time-stepping

The above local time-stepping method that one would naturally adopt, believing that it results
in a conservative treatment, makes the discretization non-conservative so that it cannot be ex-
tended to compute solutions with discontinuity. The question of conservation is hotly debated
for non-linear problems with shock waves, see for instance Reference [22].
To see that, let us consider the interface Il+1=2 which separates the subgrids l and l + 1,

and write the di�erence equation (2) in conservative form

un+1l; j − unl; j= − �l(fnl; j+1=2 − fnl; j−1=2) + klsl; j − q
2
k2l (sx)l; j

where fl; j+1=2 = 1
2(ul; j + ul; j+1)− 1

2 �l(ul; j+1 − ul; j) is the numerical �ux. Then the right-hand
numerical �ux for the point p of subgrid l is de�ned by

fl;p+1=2 = 1
2(ul;p + ul;p+1)− 1

2 �l(ul;p+1 − ul;p)
and the left-hand numerical �ux for the point 1 of subgrid l+ 1 is de�ned by

fl+1;1=2 = 1
2(ul+1;0 + ul+1;0)− 1

2 �l+1(ul+1;1 − ul+1;0)

Here we have assumed Q(num)l = �l.
For the interface condition (4), it is very clear that conservation, i.e. fl+1;1=2 =fl;p+1=2, is

ensured only if kl= kl+1, which means that �l+1 �= �l. In order to make the interface treatment
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conservative within the framework of local time-stepping, we modify the local time-stepping
at the interface by taking an averaged time-step

kl+1=2 = 1
2(kl + kl+1)

for the interface �uxes fl;p+1=2 and fl+1;1=2, so that

fl;p+1=2 =
1
2
(ul;p + ul;p+1)− 1

2
kl+1=2
hl

(ul;p+1 − ul;p)

fl+1;1=2 =
1
2
(ul+1;0 + ul+1;0)− 1

2
kl+1=2
hl+1

(ul+1;1 − ul+1;0)

Though the modi�cation is minor, the analysis is heavily complicated. Here we will just
consider the case of p=1. The main conclusion holds true for p¿1.
For simplicity, let us denote ul;1 = vl and el;1 = el. Quite straightforwardly, one can derive

the following error equation from the interior di�erence equation and the interface condition

(
�− 2

1 + r

)
el+1 − 2

(
�+

r − 1
1 + r

)
el +

(
�+

2r
1 + r

)
el−1 =dl (40)

where

dl= − �
2

(
r − 1

r

)
hlux − 1

8

[
(1 + r)2

(
1 +

1
r2

)
�+ 2(1 + r)

(
1
r

− 1
)]
h21uxx (41)

with uxx=1 and ux= x.
Thus the source term for the error equation depends on the �rst-order derivative and

dl=O[hl]. This seems to indicate that the conservative local time-stepping method would
be less accurate than the previous non-conservative one. But our subsequent analysis, supple-
mented by numerical test, will show the contrast.
Using the interface conditions (7)–(8) at the interfaces IL−1=2 and Il+1=2, one can show that

the corresponding boundary conditions (6) in terms of the new variable vl becomes

1 + r
r + 2+ r−1

vL−1 +
1 + r−1

r + 2+ r−1
vL+1 =vL

and the error constraints due to boundary treatment are given by

e0=0 (42)

1 + r
r + 2+ r−1

eL−1 +
1 + r−1

r + 2+ r−1
eL+1 − eL=− (1 + r)2

8r
r2Lh20 (43)
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Now we want to replace ux= x by l in (41). Introducing

x= 1
2 h0 + h1 + h2 + · · ·+ hl−1 + 1

2 hl

=
1+ r
2(1− r)(1− rl)h0

into (41) yields

dl=D1rl +D2r2l

D1 =
1
4r
�(1 + r)2h20

D2 = − 1
8r2

�(1 + r)4h20 − 1
4
(r−1 − r)h20

Introducing the above expressions into (40), one can derive the following general formula for
the numerical error:

el= c1 + c2�l + arl + br2l (44)

where

�=
�+ (2r=(1 + r))
�− (2=(1 + r))

a=
D1

�r−1(1− r)2 + 4(1− r)(1 + r)−1 ≈ (1 + r)3�
16(1− r)r h

2
0 (45)

b=
D2

(1− r)2[2r + �(1− r2)] ≈ − (1 + r)3�
16(1− r)r h

2
0 (46)

Introducing (44) into the boundary conditions (42)–(43) we obtain

c1=− a− b− c2 (47)

c2=− �−L

(r�−1 + �)(1 + r)−1 − 1
[
(1 + r)2

8r
h20 +

b
r
(1− r)2

]
r2L (48)

Proposition 5.7
Let r¡1 and rT → 0. Then we have

el= − (a+ b) + arl + br2l (49)

Furthermore, the error el takes its maximum value at l= lm with

lm ≈ − ln(1 + r)
ln r

(50)
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Proof
By r¡1, we have |�|¿1. By assumption r L= rT → 0 and by (48) we necessarily have c2 → 0
and c2�l ≈ 0. Thus by (47) we have c1 = − (a+ b). In consequence, (44) reduces to (49).
Let el take its maximum value at lm, then we have elm+1 − elm =0 which, by (49), yields

lm =
ln−(a=(1 + r)b)

ln r
≈ − ln(1 + r)

ln r

It is surprising that lm only depends on r but not on � and L.

Proposition 5.8
Let r¡1. Then for large values of l, the conservative local time-stepping method is more
accurate than the non-conservative local time-stepping method.

Proof
The error for the non-conservative method is given by (39). When the explicit expression for
� is introduced, expression (39), for j=1 since p=1, can be written as

el;1 =
1
4 [3�+

1
2 − (�+ 1

2)r
2
0 − �2r0(1− r0)]

1− r20
h20

which is bounded from zero for large l.
For the conservative treatment, (49) and (45)–(46) clearly show that for large l we have

el ≈ 0.

6. NUMERICAL TEST AND CONCLUDING REMARKS

6.1. Numerical test

The numerical errors derived above are all based on analysis. Here we check some results
which involve complicated formulas. Notably, we want to check (38), which is the error
based on non-conservative local time-stepping, and (44), which is based on conservative local
time-stepping. Also, we want to check (50), which is the location of maximum error. It is
fairly interesting that the maximum error locates at the middle of the coarsest mesh and the
�nest mesh.
Precisely, we will solve the following time-dependent di�erence equation

un+1l; j = u
n
l; j − 1

2 �l(u
n
l; j+1 − unl; j−1) + 1

2 �
2
l (u

n
l; j+1 − 2unl; j + unl; j−1) + klsl; j

with the interface condition (4) and the boundary conditions (5)–(6). Both non-conservative
local time-stepping and conservative local time-stepping are considered.
The grid system is de�ned as follows:

L=20; p=1; r=0:8858; h0 = 0:1

The time step is de�ned by setting �l= 1
2 . The numerical steady state solution is obtained

by solving iteratively the above di�erence equation. Once the numerical solution no longer
varies in time (in the sense of zero-machine), then we consider the solution to be the steady
state one. Double precision is used in order to minimize the e�ect of rounding errors.
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Table I. Comparison between the theory and numerical experiment for non-conservative
local time-stepping.

Location x and l ecomp ethe by Equation (38)

0:100143 (l = 0) 5:161713e− 03 2:507173e− 03
0:278210 (l = 2) 1:381920e− 02 1:218490e− 02
0:417929 (l = 4) 1:914930e− 02 1:814312e− 02
0:527558 (l = 6) 2:243084e− 02 2:181137e− 02
0:613577 (l = 8) 2:445116e− 02 2:406978e− 02
0:681072 (l = 10) 2:569499e− 02 2:546019e− 02
0:734037 (l = 12) 2:646074e− 02 2:631622e− 02
0:775585 (l = 14) 2:693196e− 02 2:684324e− 02
0:808190 (l = 16) 2:722050e− 02 2:716771e− 02
0:833773 (l = 18) 2:738708e− 02 2:736747e− 02

Table II. Comparison between the theory and numerical experiment for conservative
local time-stepping.

Location x and l ecomp ethe by Equation (44)

0:100143 (l = 0) 4:9016136e− 03 4:2035016e− 03
0:278210 (l = 2) 1:1128670e− 02 8:8077644e− 03
0:417929 (l = 4) 1:3317105e− 02 1:0302944e− 02
0:527558 (l = 6) 1:3373448e− 02 1:0172450e− 02
0:613577 (l = 8) 1:2395163e− 02 9:2674345e− 03
0:681072 (l = 10) 1:0998019e− 02 8:0631766e− 03
0:734037 (l = 12) 9:5139807e− 03 6:8140388e− 03
0:775585 (l = 14) 8:1095053e− 03 5:6466125e− 03
0:808190 (l = 16) 6:8511702e− 03 4:6152868e− 03
0:833773 (l = 18) 5:7112593e− 03 3:7350710e− 03

Table III. Comparison between the theory and numerical experiment for the location
of the maximum error.

Re�nement degree r=0:85 r=0:8858 r=0:9 r=0:95

lm given by Equation (50) 3.78 5.22 6.09 13.02
lm given by numerical experiments 4 5 6 13

In Table I we display the comparison between the computed error (which we denote ecomp)
and the theoretical error (which we denote ethe) given by (38) for the non-conservative local
time-stepping method. The agreement between the theory and the numerical results is very
good.
In Table II we display the comparison between the computed error (which we denote ecomp)

and the theoretical error (which we denote ethe) given by (44) for the conservative local
time-stepping method. In comparison with the non-conservative results displayed in Table I,
we see that the conservative treatment indeed improves the accuracy (by almost one order
of magnitude in the �nest part of the grid). There is however a small di�erence between the
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theory and the numerical results. This is because that we have used approximated estimates
for the constants al and bl.
In Table III we display the comparison between the numerical result and the theoretical

equation (50) for the location of maximum error. The agreement is remarkable.

6.2. Concluding remarks

The present study is concerned with the steady state errors for three-point di�erence equations
on a Cartesian grid with multiple and abruptly re�ned interfaces. For a solution with constant
second-order derivative and when the total re�nement degree is maintained �xed, it leads to
the following conclusions:

(A) the steady state error is a weakly increasing function of the subgrid width;
(B) the steady state error in the �nest part of the grid is independent of the subgrid width;
(C) for the standard treatment of the source term, a conservative treatment for local time-

stepping improves the accuracy;
(D) the standard treatment of the source term, with non-conservative local time-stepping

and with large re�nement ratio, is even less accurate than the corresponding scheme
on a uniform coarse grid.

Since the accuracy is independent of the subgrid width in the �nest part of the grid which
is the most important in re�nement problems, neither the smooth re�nement nor the Cartesian
grid method is superior to the other in accuracy. Of course the Cartesian grid method with
large subgrid width seems to be more suitable for �ows where the �ne �ow structure is
contained in a small zone to be covered by a subgrid with uniform mesh size.
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